Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biophys Chem ; 275: 106608, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1219972

ABSTRACT

This paper proposes natural drug candidate compounds for the treatment of coronavirus disease 2019 (COVID-19). We investigated the binding properties between the compounds in the Moringa oleifera plant and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 using molecular docking and ab initio fragment molecular orbital calculations. Among the 12 compounds, niaziminin was found to bind the strongest to Mpro. We furthermore proposed novel compounds based on niaziminin and investigated their binding properties to Mpro. The results reveal that the introduction of a hydroxyl group into niaziminin enhances its binding affinity to Mpro. These niaziminin derivatives can be promising candidate drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Moringa oleifera/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Thiocarbamates/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Design , Drug Discovery , Gene Expression , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quantum Theory , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship , Thermodynamics , Thiocarbamates/classification , Thiocarbamates/isolation & purification , Thiocarbamates/pharmacology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL